Sunday, July 11, 2010

ECOLOGICAL ENGINEERING

Ecological engineering is an emerging of study integrating ecology and engineering, concerned with the design, monitoring and construction of ecosystems. Acoording to Mitch (1996) "the design of sustainable ecosystems intends to integrate human society with its natural environment for the benefit of both".[1]
Ecological engineering emerged as a new idea in the early 1960s, but its definition has taken several decades to refine, its implementation is still undergoing adjustment, and its broader recognition as a new paradigm is relatively recent. Ecological engineering was introduced by Howard Odum and others[2] as utilizing natural energy sources as the predominant input to manipulate and control environmental systems.
Mitsch and Jorgensen[3] wrote that ecological engineering is designing societal services such that they benefit society and nature, and later noted[4][5] the design should be systems based, sustainable, and integrate society with its natural environment. Odum[6] emphasized that self-organizational properties were a central feature to ecological engineering.
Mitsch and Jørgensen[3] were the first to define ecological engineering and provide ecological engineering principles. Later they refined the definition and increased the number of principles[7]. They defined and characterized ecological engineering in a 1989 book and clarified it further in their 2004 book (see Literature). They suggest the goal of ecological engineering is: a) the restoration of ecosystems that have been substantially disturbed by human activities such as environmental pollution or land disturbance, and b) the development of new sustainable ecosystems that have both human and ecological values. They summarized the five concepts key to ecological engineering as:
it is based on the self-designing capacity of ecosystems,
it can be a field test of ecological theory,
it relies on integrated system approaches,
it conserves non-renewable energy, and
it supports biological conservation.
Bergen et al.[8] defined ecological engineering as:
utilizing ecological science and theory,
applying to all types of ecosystems,
adapting engineering design methods, and
acknowledging a guiding value system.
Barrett (1999) [9] offers a more literal definition of the term: "the design, construction, operation and management (that is, engineering) of landscape/aquatic structures and associated plant and animal communities (that is, ecosystems) to benefit humanity and, often, nature." Barrett continues: "other terms with equivalent or similar meanings include ecotechnology and two terms most often used in the erosion control field: soil bioengineering and biotechnical engineering. However, ecoengineering should not be confused with 'biotechnology' when describing genetic engineering at the cellular level, or 'bioengineering' meaning construction of artificial body parts."
This engineering discipline combines basic and applied science from engineering, ecology, economics, and natural sciences for the restoration and construction of aquatic and terrestrial ecosystems. The field of ecological engineering is increasing in breadth and depth as more opportunities to design and use ecosystems as interfaces between technology and environment are explored.[10]

No comments:

Post a Comment